Abstract

In this paper, a novel multi-USV formation path planning algorithm is proposed based on deep reinforcement learning. First, a goal-based hierarchical reinforcement learning algorithm is designed to improve training speed and resolve planning conflicts within the formation. Second, an improved artificial potential field algorithm is designed in the training process to obtain the optimal path planning and obstacle avoidance learning scheme for multi-USVs in the determined perceptual environment. Finally, a formation geometry model is established to describe the physical relationships among USVs, and a composite reward function is proposed to guide the training. Numerous simulation tests are conducted, and the effectiveness of the proposed algorithm are further validated through the NEU-MSV01 experimental platform with a combination of parameterized Line of Sight (LOS) guidance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call