Abstract

A computer model has been developed that simulates charge transport of carriers in a surface channel charge-coupled device. This model is based on the charge continuity and current transport equations with a time dependent surface field. The device structure of the model includes a source diffusion an input gate and transfer gate. The present model is the first real simulation of the input scheme of the surface-channel CCDs. The scooping and spilling techniques associated with the charge injection process are simulated by the input diffusion which is included in the model. As an application to a CCD practical problem the present model has been used to study the linearity of the electrical charge injection into surface channel charge-coupled devices. The generated harmonic components of a sinusoidal input are calculated using the transfer characteristics of the input stage obtained from the computer simulation. Using this model the spatial variations of the self-induced fringing field and total currents under the storage and transfer gates were computed. The charge transfer mechanisms for short-gate ( L ≤ 8 μm) CCDs was investigated. It was found that for short gates the charge transfer efficiency is governed mainly by the fringing field and self-induced current mechanisms. The results of this study help to clarify the mechanism by which the signal-charge level and gate length affect the charge transfer efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call