Abstract
In this paper, a compound cosine function neural network controller for manipulators is presented based on the combination of a cosine function and a unipolar sigmoid function. The compound control scheme based on a proportional-differential (PD) feedback control plus the cosine function neural network feedforward control is used for the tracking control of manipulators. The advantages of the compound control are that the system model does not need to be identified beforehand in the manipulator control system and it can achieve better adaptive control in an on-line continuous learning manner. The simulation results for the two-link manipulator show that the proposed compound control has higher tracking accuracy and better robustness than the conventional PD controllers in the position trajectory tracking control for the manipulator. Therefore, the compound cosine function neural network controller provides a novel approach for the manipulator control with uncertain nonlinear problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have