Abstract

The annular antenna is a typical large flexible space truss structure featured by small damping and low modal frequencies. The external disturbances, e.g. impulse load resulting from satellite attitude adjusting, may induce the low frequency large amplitude vibrations of annular antenna for a long time and thus reduce working precision and cause even its damage. The active control of vibration of annular antenna under impulse excitation is investigated in the paper. The voice coil actuator instead of piezoelectric stack actuator is used in order to meet the demand of large output displacement. The governing equation of active vibration control system is established by use of finite element method. The proportional differential (PD) control and fuzzy control algorithms are firstly studied in the active control. The results show that the fuzzy control exhibits worse control performance than PD control due to weak control function near structural equilibrium position. To circumvent the drawback of fuzzy control, a fuzzy PD hybrid control strategy is proposed which can combine the merits of both control methods. The simulated and experimental results show that the fuzzy PD hybrid control can yield the best control effect under impulse excitation comparing with the PD control and ordinary fuzzy control. The work provides a promising control way for active control of low frequency and large displacement vibration of annular antenna in satellite engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.