Abstract

Free Access References Shuai Li, Shuai Li Hong Kong Polytechnic UniversitySearch for more papers by this authorLong Jin, Long Jin Hong Kong Polytechnic UniversitySearch for more papers by this authorMohammed Aquil Mirza, Mohammed Aquil Mirza Hong Kong Polytechnic UniversitySearch for more papers by this author Book Author(s):Shuai Li, Shuai Li Hong Kong Polytechnic UniversitySearch for more papers by this authorLong Jin, Long Jin Hong Kong Polytechnic UniversitySearch for more papers by this authorMohammed Aquil Mirza, Mohammed Aquil Mirza Hong Kong Polytechnic UniversitySearch for more papers by this author First published: 15 February 2019 https://doi.org/10.1002/9781119557005.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Li, Y., Li, S., and Hannaford, B. (2018). A model based recurrent neural network with randomness for efficient control with applications. IEEE T. Ind. Inform. doi: 10.1109/TII.2018.2869588. Zhang, Y., Li, S., Kadry, S., and Liao, B. (2018). Recurrent neural network for kinematic control of redundant manipulators with periodic input disturbance and physical constraints. IEEE Trans. Cybern. (99): 1– 12. DOI: 10.1109/TCYB.2018.2859751 Zhang, Y., Chen, S., Li, S., and Zhang, Z. (2018). Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters. IEEE Trans. Ind. Electron. 65 (6): 4909– 4920. Jin, L., Zhang, Y., and Li, S. (2016). Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27 (12): 2615– 2627. Jin, L. and Zhang, Y. (2015). Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer. Algorithms 73 (1): 115– 140. Jin, L., Li, S., Hu, B., and Yi, C. (2018). Dynamic neural networks aided distributed cooperative control of manipulators capable of different performance indices. Neurocomputing 291: 50– 58. Li, S., Wang, H., and Rafique, M. U. (2018). A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learning Syst. 29 (5): 1908– 1918. Jin, L., Zhang, Y., Qiao, T. et al. (2016). Tracking control of modified Lorenz nonlinear system using ZG neural dynamics with additive input or mixed inputs. Neurocomputing 196: 82– 94. Zhang, Y. and Li, S. (2018). A neural controller for image-based visual servoing of manipulators with physical constraints. IEEE Trans. Neural Netw. Learning Syst. 29 (11), 5419– 5429. Miao, P., Shen, Y., and Xia, X. (2014). Finite time dual networks with a tunable activation function for solving quadratic programming problems and its application. Neurocomputing 143: 80– 89. Li, S. and Zhang, Y. (2018). Neural Networks for Cooperative Control of Multiple Robot Arms. Springer: Singapore. Jin, L. and Li, S. (2017). Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 18: 128– 138. Jin, L. and Li, S. (2018). Distributed task allocation of multiple robots: A control perspective. IEEE Trans. Syst., Man, Cybern., Syst. 48 (5): 693– 701. Zhang, Z. and Zhang, Y. (2013). Design and experimentation of acceleration-level drift-free scheme aided by two recurrent neural networks. IET Control Theory Appl. 7 (1): 25– 42. Jin, L., Li, S., La, H.M., and Luo, X. (2017). Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64 (6): 4710– 4720. Li, S., Zhou, M., and Luo, X. (2018). Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29 (10), 4791– 4801. De Silva, C.W. (2007). Sensors and Actuators: Control System Instrumentation. Boca Raton, FL: Taylor & Francis. Li, S., Zhou, M., Luo, X., and You, Z.H. (2017). Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62 (2): 577– 589. Li, S., Meng, M.Q.H. and Chen, W. (2007). SP-NN: A novel neural network approach for path planning. IEEE International Conference Robotics and Biomimetics, Sanya, Hainan, China. Isidori, A. (1999). Nonlinear Control Systems II. New York: Springer-Verlag. Huo,W. (2008). Predictive variable structure control of nonholonomic chained systems. Int. J. Comput. Math. 85: 949– 960. Dumitrascu, B., Filipescu, A., Minzu, V., and Filipescu, A. (2007). Backstepping control of wheeled mobile robots. International Conference on System Theory, Control, and Computing, Sinaia, Romania. Bertsekas, D.P. (2005). Dynamic Programming and Optimal Control. Nashua, NH: Athena Scientific. Si, J. and Wang, Y.T. (2001). Online learning control by association and reinforcement. IEEE Trans. Neural Netw. 12: 264– 276. Hollerbach, J. and Ki, S. (1987). Noise-tolerant ZNN models for solving time-varying zero-finding problems: A Control-Theoretic Approach. IEEE J. Robotics Automat. 3 (4): 308– 316. O'Neil, K. (2002). Divergence of linear acceleration-based redundancy resolution schemes. IEEE Trans. Robot. Automat. 18 (4): 625– 631. Kanoun, O., Lamiraux, F., and Wieber, P. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27 (4): 785– 792. Escande, A., Mansard, N., and Wieber, P. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. Int. J. Robot Res. 33 (7): 1006– 1028. Sadjadian, H., Taghirad, H., and Fatehi, A. (2005). Neural networks approaches for computing the forward kinematics of a redundant parallel manipulator. Int. J. Comput. Intell. 2 (1): 40– 47. Kumar, N., Panwar, V., Sukavanam, N. et al. (2011). Neural network-based nonlinear tracking control of kinematically redundant robot manipulators. Math. Comput. Model. 53 (9–10): 1889– 1901. Patchaikani, P., Behera, L., and Prasad, G. (2012). A single network adaptive critic-based redundancy resolution scheme for robot manipulators. IEEE Trans. Ind. Electron. 59 (8): 3241– 3253. Zhang, S. and Constantinides, A. (1992). Lagrange programming neural networks. IEEE Trans. Circuits Syst. II 39 (7): 441– 452. Mirza, A. and Li, S. (2015). Dynamic neural networks for kinematic redundancy resolution of parallel Stewart platforms. IEEE Trans. Cybern. 99 (8): 3241– 3253. Liao, B., Zhang Y., and Jin, L. (2016). Taylor O(h3) Discretization of ZNN models for dynamic equality-constrained quadratic programming with application to manipulators. IEEE Trans. Neural Netw. Learning Syst. 27 (2): 225– 237. Li, S., Liu, B., Chen, B., and Lou, Y. (2013). Neural network based mobile phone localization using bluetooth connectivity. Neural Comput. Appl. 23 (3–4): 667– 675. Wang, J. (2010). Analysis and design of a k-winners-take-all model with a single state variable and the heaviside step activation function. IEEE Trans. Neural Netw. 21 (9): 1496– 1506. Xia, Y., Sun, C., and Zheng, W. (2012). Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration. IEEE Trans. Neural Netw. Learning Syst. 23 (5): 812– 820. Zhang, Y., Ge, S.S. and Lee, T.H. (2004). A unified quadratic programming based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst. Man Cybern. B Cybern. 34 (5): 2126– 2132. Zhang, Y., Wang, J., and Xia, Y. (2003). A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans. Neural Netw. 14 (3): 658– 667. Xia, Y. and Wang, J. (2001). A dual neural network for kinematic control of redundant robot manipulators. IEEE Trans. Syst., Man, Cybern. B 31 (1): 147– 154. Wang, Z.P., Zhou, T., Mao, Y., and Chen, Q.J. (2014). Adaptive recurrent neural network control of uncertain constrained nonholonomic mobile manipulators. Int. J. Syst. Sci. 45 (2): 133– 144. Li, S. and Jin, L. (2018). Competition-Based Neural Networks with Robotic Applications. Springer: Singapore. Li, S., He, J., Rafique, U., and Li, Y. (2016). Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learning Syst. 14 (3): 658– 667. Stengel, R.F. (1994). Optimal Control and Estimation, 2e. New York: Dover Publications. Xia, Y., Feng, G., and Wang, J. (2005). A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. IEEE Trans. Syst., Man, Cybern. B 14 (1): 426– 667. Zhang, Y. and Wang, J. (2004). Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Trans. Syst., Man, Cybern. B 34 (1): 752– 759. Zhang, Y., Wang, J., and Xu, Y. (2002). A dual neural network for bi-criteria kinematic control of redundant manipulators. IEEE Trans. Robot. Automat. 18 (6): 923– 931. Khalil, H. (2001). Nonlinear Systems, 3e. Upper Saddle River, NJ: Prentice Hall. Liu, G., Xu, J., Wang, X., and Li, Z. (2004). On quality functions for grasp synthesis, fixture planning, and coordinated manipulation. IEEE Trans. Autom. Sci. Eng. 1 (2): 146– 162. Liu, S. and Wang, J. (2006). A simplified dual neural network for quadratic programming with its KWTA application. IEEE Trans. Neural Netw. 17 (6): 1500– 1510. Liu, Q. and Wang, J. (2013). A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints. IEEE Trans. Neural Netw. Learning Syst. 24 (5): 812– 824. Hu, X. and Wang, J. (2008). An improved dual neural network for solving a class of quadratic programming problems and its-winners-take-all application. IEEE Trans. Neural Netw. 19 (12): 2022– 2031. Xia, Y., Chen, T., and Shan, J. (2014). A novel iterative method for computing generalized inverse. Neural Comput. 26 (2): 449– 465. Liu, Q., Guo, Z., and Wang, J. (2012). A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization. Neural Netw. 26: 99– 109. Xiao, L. and Zhang, Y. (2014). A new performance index for the repetitive motion of mobile manipulators. IEEE Trans. Cybern. 44 (2): 280– 292. Huang, G. and Cao, J. (2010). Delay-dependent multistability in recurrent neural networks. Neural Netw. 23 (2): 201– 209. Gao, X. (2003). Exponential stability of globally projected dynamic systems. IEEE Trans. Neural Netw. 14 (2): 426– 431. Mirza, M.A., Li, S., and Jin, L. (2017). Simultaneous learning and control of parallel Stewart platforms with unknown parameters. Neurocomputing 266: 114– 122. Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press. Zhang, Y., Li, S., and Zhou, X. (2018). Recurrent neural network based velocity-level redundancy resolution for manipulators subject to joint acceleration limit. IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2018.2851960. Li, S., Kong, R., and Guo, Y. (2014). Cooperative distributed source seeking by multiple robots: algorithms and experiments. IEEE/ASME Trans. Mech. 19 (6): 1810– 1820. Li, M., Li, W., Niu, L. et al. (2017). An event-related potential-based adaptive model for telepresence control of humanoid robot motion in an environment with cluster obstacles. IEEE Trans. Ind. Electron. 64 (2): 1696– 1705. Jin, L. and Zhang, Y. (2015). G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans. Cybern. 45 (2): 153– 164. Jin, L., Zhang, Y., Li, S., and Zhang, Y. (2016). Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 63 (11): 6978– 6988. He, W., Ge, W., Li, Y. et al. (2017). Model identification and control design for a humanoid robot. IEEE Trans. Syst., Man, Cybern., Syst. 47 (1): 45– 57. La, H.M., Lim, R., and Sheng, W. (2015). Multi-robot cooperative learning for predator avoidance. IEEE Trans. Contr. Syst. Technol. 23 (1): 52– 63. La, H.M. Lim, R., Basily, B. et al. (2013). Mechatronic and control systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation. IEEE-ASME Trans. Mechatr. 18 (6): 1655– 1664. La, H.M., Sheng, W., and Chen, J. (2015). Cooperative and active sensing in mobile sensor networks for scalar field mapping. IEEE Trans. Syst., Man, Cybern. Syst. 45 (1): 1– 12. Nikdel, N., Badamchizadeh, M., Azimirad, V., and Nazari, M.A. (2016). Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances. IEEE Trans. Ind. Electron. 63 (10): 6249– 6256. Guo, D. and Zhang, Y. (2014). Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion. Appl. Soft Comput. 24: 158– 168. Jin, L. and Zhang, Y. (2014). Discrete-time Zhang neural network of O(τ 3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation. Neurocomputing 142: 165– 173. Cai, B. and Zhang, Y. (2012). Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang et al.'s neural-dynamic methods. IEEE Trans. Ind. Electron. 59 (8): 3146– 3155. Zhang, Y. and Li, S. (2017). Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans. Syst., Man, Cybern., Syst. 47 (7): 1701– 1711. Wang, H., Liu, X., and Liu, K. (2016). Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learning Syst. 27 (3): 510– 523. Xiao, L. and Zhang, Y. (2016). Dynamic design, numerical solution and effective verification of acceleration-level obstacle-avoidance scheme for robot manipulators. Int. J. Syst. Sci. 47 (4): 932– 945. Wang, H., Liu, K., Liu X., and Chen, B. (2015). Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45 (9): 1977– 1987. Li, S., Li, Y., Liu, B., and Murray, T. (2012). Model-free control of Lorenz chaos using an approximate optimal control strategy. Commun. Nonlinear Sci. Numer. Simul. 17 (12): 4891– 4900. Luo, C., Yang, S.X., Li, X., and Meng, M.Q.-H. (2017). Neural dynamics driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Trans. Ind. Electron. 64 (1): 750– 760. Na, J., Chen, Q., Ren, X., and Guo, Y. (2014). Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61 (1): 486– 494. Li, S., Li, Y., and Wang, Z. (2013). A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27– 39. Li, S., Liu, B., and Li, Y. (2013). Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans. Neural Netw. Learning Syst. 24 (2): 301– 309. Xia, Y., Feng, G., and Wang, J. (2004). A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations. Neural Netw. 17 (7): 1003– 1015. Zhang, Y., Yan, X., Chen, D. et al. (2016). QP-based refined manipulability maximizing scheme for coordinated motion planning and control of physically constrained wheeled mobile redundant manipulators. Nonlinear Dyn. 85 (1): 245– 261. Li, S., Zhang, Y., and Jin, L. (2017). Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28 (10): 2243– 2254. Li, S., Wang, Z., and Li, Y. (2013). Using laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process. Lett. 37 (3): 411– 424. Yoshikawa, T. (1985). Manipulability of robotic mechanisms. Int. J. Robot Res. 4 (2): 3– 9. Gao, Z. and Zhang, D. (2015). Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans. Ind. Electron. 62 (1): 423– 433. Khalil, H. (1996). Nonlinear Systems. Upper Saddle River, NJ: Prentice Hall. Spong, M. and Vidyasagar, M. (2008). Robot Dynamics and Control. Hoboken, NJ: Wiley. Liu, S., Li, W., Du, Y., and Fang, L. (2006). Forward kinematics of the Stewart platform using hybrid immune genetic algorithm. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China (6–11 June 2006), 2330– 2335. Liu, Q., He, Q., and Shi, Z. (2008). Extreme support vector machine classifier. In: Advances in Knowledge Discovery and Data Mining, vol. 5012 of Lecture Notes in Computer Science (eds T. Washio, E. Suzuki, K. Ting, and A. Inokuchi), 222– 233. Berlin: Springer. Nakamura, Y. and Hanafusa, H. (1986). Inverse kinematics solutions with singularity robustness for robot manipulator control. ASME J. Dyn. Sys., Meas., Control 108: 230– 240. Zhang, D. and Lei, J. (2011). Kinematic analysis of a novel 3-DOF actuation redundant parallel manipulator using artificial intelligence approach. Robot. Comput. Integr. Manuf. 27 (1): 157– 163. Assal, S. (2012). Self-organizing approach for learning the forward kinematic multiple solutions of parallel manipulators. Robotica 30 (06): 951– 961. Chen, S. and Fu, L. (2013). Output feedback sliding mode control for a Stewart platform with a nonlinear observer-based forward kinematics solution. IEEE Trans. Control Syst. Technol. 21(1): 176– 185. Liu, G., Qu, Z., Liu, X., and Han, J. (2014). Tracking performance improvements of an electrohydraulic Gough-Stewart platform using a fuzzy incremental controller. Ind. Robot 41 (2): 225C235. Gosselin, C. (1990). Stiffness mapping for parallel manipulators. IEEE Trans. Robot. Autom. 6 (3): 377– 382. Zhang, Z. and Zhang, Y. (2012). Acceleration-level cyclic-motion generation of constrained redundant robots tracking different paths. IEEE Trans. Syst., Man, Cybern. B, Cybern. 42 (4): 1257– 1269. Xiao, L. and Zhang, Y. (2013). Acceleration-level repetitive motion planning and its experimental verification on a six-link planar robot manipulator. IEEE Trans. Control Syst. Technol. 21 (3): 906– 914. Zhang, Z., Li, Z., Zhang, Y. et al. (2015). Neural-dynamic-method-based dualarm CMG scheme with time-varying constraints applied to humanoid robots. IEEE Trans. Neural Netw. Learning Syst. 26 (12): 3251– 3262. Chen, C.L.P., Wen, G., Liu, Y., and Wang, F. (2014). Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Trans. Neural Netw. Learning Syst. 25 (6): 1217– 1226. Maeso, S., Reza, M., Mayol, J. et al. (2010). Efficacy of the Da Vinci surgical system in abdominal surgery compared with that of laparoscopy: A systematic review and meta-analysis. Ann. Surg. 252 (2): 254– 262. Aiyama, Y., Hara, M., Yabuki, T. et al. (1999). Cooperative transportation by two four-legged robots with implicit communication. Robot. Auton. Syst. 29 (1): 13– 19. Welch, J., Backer, D., Bauermeister, A. et al. (2009). The Allen telescope array: The first widefield, panchromatic, snapshot radio camera for radio astronomy and SETI. Proc. IEEE 97 (8): 1438– 1447. Jin, L. and Li, S. La, H., Zhang, X., and Hu, B. (2019). Distributed task allocation in multi-robot coordination for moving target tracking: a distributed approach. Automatica. Chen, C.L.P., Wen, G., Liu, Y., and Liu, Z. (2016). Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46 (7): 1591– 1601. Wen, G., Chen, C.L.P., Liu, Y., and Liu, Z. (2015). Neural-network-based adaptive leader following consensus control for second-order non-linear multi-agent systems. IET Control Theory Appl. 9 (13): 1927– 1934. Wang, D., Zhang, N., Wang, J., and Wang, W. (2017). Cooperative containment control of multiagent systems based on follower observers with time delay. IEEE Trans. Syst., Man, Cybern., Syst. 47 (1): 13– 23. Liu, Y. and Tong, S. (2015). Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23 (5): 1387– 1398. Liu, Z.-W., Yu, X., Guan, Z.-H. et al. (2017). Pulse-modulated intermittent control in consensus of multiagent systems. IEEE Trans. Syst., Man, Cybern., Syst. 47 (5): 783– 793. Zhang, Y. and Li, S., and Jiang, X. (2018). Near-optimal control without solving HJB equations and its applications. IEEE Trans. Ind. Electron. 65 (9): 7173– 7184. He, W., Chen, Y., and Yin, Z. (2016). Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46 (3): 620– 629. He, W., Dong, Y., and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst., Man, Cybern., Syst. 46 (3): 334– 344. Wang, H., Chen, B., Liu, K. et al. (2015). Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. Learning Syst. 25 (5): 947– 958. Li, S., Guo, Y., and Bingham, B. (2014). Multi-robot cooperative control for monitoring and tracking dynamic plumes. 2014 IEEE International Conference on Robotics and Automation (ICRA), 67– 73. IEEE. Wang, H., Shi, P., Li, H., and Zhou, Q. (2017). Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Trans. Cybern. 47 (10): 3075– 3087. Zhang, Y. and Yi, C. (2011). Zhang Neural Networks and Neural-Dynamic Method. Hauppauge, NY: Nova. Jin, L., Zhang, Y., Li, S., and Zhang, Y. (2017). Noise-tolerant ZNN models for solving time-varying zero-finding problems: A Control-Theoretic Approach. IEEE Trans. Autom. Control 62 (2): 992– 997. Jin, L. and Zhang, Y. (2015). Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation. IEEE Trans. Neural Netw. Learning Syst. 26 (7): 1525– 1531. Li, S., Chen, S., and Liu, B. (2013). Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process. Lett. 37 (2): 189– 205. Xiao, L. and Liao, B. (2016). A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation. Neurocomputing 193: 213– 218. Guo, D., Nie, Z., and Yan, L. (2016). Theoretical analysis, numerical verification and geometrical representation of new three-step DTZD algorithm for time-varying nonlinear equations solving. Neurocomputing 214: 516– 526. Guo, D., Nie, Z., and Yan, L. (2017). Novel discrete-time Zhang neural network for time-varying matrix inversion. IEEE Trans. Syst., Man, Cybern., Syst. 47 (8): 2301– 2310. Zhang, Y., Lv, X., Li, Z. et al. (2008). Effective neural remedy for drift phenomenon of planar three-link robot arm using quadratic performance index. Electron. Lett. 44 (6): 1– 2. Li, S., Wang, Y., Yu, J., and Liu, B. (2013). A nonlinear model to generate the winner-take-all competition. Commun. Nonlinear Sci. Numer. Simul. 18 (3): 435– 442. Li, S., Chen, S., Liu, B. et al. (2012). Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91: 1– 10. Li, S., Cui, H., Li, Y. et al. (2012). Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput. Appl. 23 (3): 1051– 1060. Jin, L., Li, S., Liao. B., and Zhang, Z. (2017). Zeroing neural networks: A survey. Neurocomputing 267 (6): 597– 604. Jin, L., Li, S., Xiao, L. et al. (2018). Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst., Man, Cybern., Syst. 48 (10): 1715– 1724. Kinematic Control of Redundant Robot Arms Using Neural Networks ReferencesRelatedInformation

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call