Abstract

A GaAs-based three-branch nanowire junction (TBJ) with Schottky wrap gates (WPGs) is investigated to realize novel Boolean logic gates. The WPG-controlled TBJ shows a bell-shaped voltage input–output curve and is controlled by gate voltage on the WPGs. The observed characteristics are explained using a simple equivalent circuit model. AND gate operation is realized in the WPG-controlled TBJ and its output voltage swing is controlled using WPGs. It can also operate as a NOT gate by changing the measurement circuit. A NAND gate is fabricated by integrating two WPG-controlled TBJs, and correct operation with a voltage transfer gain of 2.2 is realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.