Abstract

A three-terminal nanowire junction device controlled by double nanometer-sized Schottky wrap gates (WPGs), which control left and right branches independently, are fabricated utilizing AlGaAs∕GaAs etched nanowires and characterized experimentally. Fabricated device exhibits clear nonlinear characteristics of output voltage at the center terminal by applying voltages to left and right terminals in push-pull fashion. Applying asymmetric gate voltages to left and right WPGs provides clear asymmetry in the output voltage. The nonlinearity in the low voltage regions is greatly enhanced by squeezing both left and right branches using WPGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.