Abstract
Superconducting nanowire single-photon detectors are widely used for detecting individual photons across various wavelengths from ultraviolet to near-infrared range. Recently, there has been increasing interest in enhancing their sensitivity to single photons in the mid-infrared spectrum, driven by applications in quantum communication, spectroscopy, and astrophysics. Here, we present our efforts to expand the spectral detection capabilities of U-shaped NbTiN-based superconducting nanowire single-photon detectors, fabricated in a 2-wire configuration on a silicon-on-insulator substrate, into the mid-infrared range. We demonstrate saturated internal detection efficiency extending up to a wavelength of 3.5 μm for a 5 nm thick and 50 nm wide NbTiN nanowire with a dark count rate less than 10 counts per second at 0.9 K and a rapid recovery time of 4.3 ns. The detectors are engineered for integration on waveguides in a silicon-on-insulator platform for compact, multi-channel device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.