Abstract

Spacetime-discontinuous Galerkin (SDG) finite element methods are used to solve hyperbolic spacetime partial differential equations (PDEs) to accurately model wave propagation phenomena arising in important applications in science and engineering. Tent Pitcher is a specialized algorithm, invented by Üngör and Sheffer (2000) and extended by Erickson et al. (2005) to construct an unstructured simplicial ( d + 1 ) -dimensional spacetime mesh over an arbitrary d-dimensional space domain. Tent Pitcher is an advancing front algorithm that incrementally adds groups of elements to the evolving spacetime mesh. It supports an accurate, local, and parallelizable solution strategy by interleaving mesh generation with an SDG solver. When solving nonlinear PDEs, previous versions of Tent Pitcher must make conservative worst-case assumptions about the physical parameters which limit the duration of spacetime elements. Thus, these algorithms create a mesh with many more elements than necessary. In this paper, we extend Tent Pitcher to give the first spacetime meshing algorithm suitable for efficient simulation of nonlinear phenomena using SDG methods. We adapt the duration of spacetime elements to changing physical parameters due to nonlinear response. Given a triangulated 2-dimensional Euclidean space domain M corresponding to time t = 0 and initial and boundary conditions of the underlying hyperbolic spacetime PDE, we construct an unstructured tetrahedral mesh in the spacetime domain E 2 × R . For every target time T ⩾ 0 , our algorithm meshes the spacetime volume M × [ 0 , T ] with a bounded number of non-degenerate tetrahedra. A recent extension of Tent Pitcher due to Abedi et al. (2004) adapts the spatial size of spacetime elements in 2D × time to a posteriori estimates of numerical error. Our extension of Tent Pitcher retains the ability to perform adaptive refinement and coarsening of the mesh. We thus obtain the first adaptive nonlinear Tent Pitcher algorithm to build spacetime meshes in 2D × time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.