Abstract
We review recent progress in applying spacetime discontinuous Galerkin (SDG) finite element methods to problems whose solutions exhibit various types of moving discontinuities. SDG models and related solution methods offer a number of attractive features, including element-wise satisfaction of the governing balance laws, linear computational complexity in the number of spacetime elements, and a computational structure that readily supports parallel implementations. We describe the use of new unstructured spacetime meshing procedures ind discretizing evolving discontinuities. Specifically, we show how h-adaptive spacetime meshing can be used to capture weak shocks in linear elastodynamics, how the SDG framework provides a convenient setting for implementing cohesive models for dynamic fracture, and how more advanced spacetime meshing procedures can deliver sharp representations of discontinuous solution features by tracking the trajectories of contact discontinuities in compressible gas dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.