Abstract
Based on a closed form of the base–emitter voltage of the parasitic bipolar transistor, a physical model of floating body effects is proposed for polysilicon thin film transistors, which takes into account the polysilicon graded pn junction and the generation rate including the Poole-Frenkel effect. Simulated results by this model are in good agreement with experimental data. It is shown that the action of a parasitic bipolar transistor should be taken into account only when the channel length is short enough due to the much smaller carrier mobility in polysilicon compared with single crystalline silicon. Whereas, the parasitic bipolar transistor gain (β) increases sharply with decreasing the channel length when the channel length is less than 5μm, which is due to the rapid increase of the base transport factor (αT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.