Abstract
In this paper, we proposed a good classifier to match different spatial data sets by applying evaluation of classifiers performance in data mining and biometrics. For this, we calculated distances between a pair of candidate features for matching criteria, and normalized the distances by Min-Max method and Tanh (TH) method. We defined classifiers that shape similarity is derived from fusion of these similarities by CRiteria Importance Through Intercriteria correlation (CRITIC) method, Matcher Weighting method and Simple Sum (SS) method. As results of evaluation of classifiers performance by Precision-Recall (PR) curve and area under the PR curve (AUC-PR), we confirmed that value of AUC-PR in a classifier of TH normalization and SS method is 0.893 and the value is the highest. Therefore, to match different spatial data sets, we thought that it is appropriate to a classifier that distances of matching criteria are normalized by TH method and shape similarity is calculated by SS method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have