ZnO has a large band gap, which affects its photoelectric catalytic performance to a certain extent. In this paper, Bi-doped ZnO nanoarray was successfully prepared by electrochemical deposition to improve the photoelectrochemical performance of ZnO as a photoanode. XRD results show the prepared Bi-doped ZnO is a typical hexagonal wurtzite crystal, and the SEM results also proved this point. The prepared Bi-doped ZnO presents a neat nano-array, and the doping of Bi also reduces the diameter of the nanorods from the original 500–350 nm. The results of XPS show that Bi is successfully doped into the ZnO nanoarrays, and it exists in the form of Bi2O3. Subsequently, the prepared Bi-doped ZnO was analyzed by fluorescence spectroscopy and photoelectrochemical properties, and it was found that when the doping concentration was 5%, the fluorescence intensity was the lowest, and at this time the carrier recombination rate corresponding was the lowest, the photoelectric catalytic effect was the best.
Read full abstract