Abstract

ZnO has a large band gap, which affects its photoelectric catalytic performance to a certain extent. In this paper, Bi-doped ZnO nanoarray was successfully prepared by electrochemical deposition to improve the photoelectrochemical performance of ZnO as a photoanode. XRD results show the prepared Bi-doped ZnO is a typical hexagonal wurtzite crystal, and the SEM results also proved this point. The prepared Bi-doped ZnO presents a neat nano-array, and the doping of Bi also reduces the diameter of the nanorods from the original 500–350 nm. The results of XPS show that Bi is successfully doped into the ZnO nanoarrays, and it exists in the form of Bi2O3. Subsequently, the prepared Bi-doped ZnO was analyzed by fluorescence spectroscopy and photoelectrochemical properties, and it was found that when the doping concentration was 5%, the fluorescence intensity was the lowest, and at this time the carrier recombination rate corresponding was the lowest, the photoelectric catalytic effect was the best.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.