Aqueous zinc-ion batteries (AZIBs) have garnered attention from researchers for their high theoretical capacity, safety, and low cost. However, the uncontrolled growth of zinc (Zn) dendrites and spontaneous corrosion reactions on the Zn anode significantly compromise the cycle life of AZIBs. This paper proposes the utilization of a novel zeolitic imidazole framework (ZIF-N) material with zincophilicity and hydrophilicity for modifying the Zn anode of AZIBs. ZIF-N incorporates numerous electron-withdrawing nitro groups at the Zn/ZIF-N interface to regulate the uneven electron distribution on the Zn anode. The modified Zn anode (Zn@ZIF-N) exhibits a lower polarization ratio (32.18 mV at 4 mA cm−2) and an extended cycle life (over 700 h at 4 mA cm−2). At a current density of 1 mA cm−2, the battery composed of a Zn@ZIF-N anode and NVO (NaV3O8) achieves a cycle life of 1600 cycles. This work provides a straightforward and cost-effective strategy for modifying the Zn anode to prolong the cycle life of AZIBs.