Abstract

The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.