This study investigates the structures, compositions and fluorocarbon-plasma etching behaviors of yttrium oxyfluoride (YOF) passivation films fabricated on sputter-deposited yttrium oxide (Y2O3) by high-density SF6 plasma irradiation. High-resolution transmission electron microscopy and nano-beam electron diffraction confirmed a YOF passivation film containing multiple phases of (104) and (006) crystal planes was formed on the fluorinated Y2O3 surface. X-ray photoelectron spectroscopy revealed few changes in the chemical compositions and surface roughness of the YOF passivation film after fluorocarbon plasma etching, confirming the chemical stability of the SF6 plasma-treated Y2O3 sample. The etching depth was ∼20% lower on the SF6 plasma-treated Y2O3 film than on the commercial Y2O3 coating. These results showed that the SF6 plasma-treated Y2O3 films have an excellent erosion resistance properties compared to the commercial Y2O3 coatings.