Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, such as Lygeum spartum, a fast-growing Mediterranean plant, is crucial. It has not been previously investigated as a potential source of nanocellulose. This study investigates the extraction of novel cellulose micro/nanofibers from Lygeum spartum using a two-step method, including both alkali and mechanical treatment as post-treatment with ultrasound, as well as homogenization using water and dilute alkali solution as a solvent. To determine the structural properties of CNFs, a series of characterization techniques was applied. A significant correlation was observed between the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) results. The FTIR results revealed the elimination of amorphous regions and an increase in the energy of the H-bonding modes, while the XRD results showed that the crystal structure of micro/nanofibers was preserved during the process. In addition, they indicated an increase in the crystallinity index obtained with both methods (deconvolution and Segal). Thermal analysis based on thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed improvement in the thermal properties of the isolated micro/nanofibers. The temperatures of maximum degradation were 335 °C and 347 °C. Morphological analysis using a scanning electron microscope (SEM) and atomic force microscope (AFM) showed the formation of fibers along the axis, with rough and porous surfaces. The findings indicate the potential of Lygeum spartum as a source for producing high-quality micro/nanofibers. A future direction of study is to use the cellulose micro/nanofibers as additives in recycled paper and to evaluate the mechanical properties of the paper sheets, as well as investigate their use in smart paper.