Abstract

Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) were used to study the effects of heat treatments and water removal by freeze-drying after different time intervals (6, 12, 24, 48, and 72 h) on the molecular structure of potato tubers. SEM images show structural differences between raw (RP), microwaved (MP), and boiled potato (BP). MP showed a cracked structure. BP was able to re-associate into a granule-like structure after 6 h of freeze-dying, whereas RP had dried granules within a porous matrix after 24 h of freeze-drying. These results are consistent with the moisture content and FTIR results for MP and BP, which demonstrated dried spectra after 6 h of freeze-drying and relatively coincided with RP results after 24 h of freeze-drying. Additionally, three types of hydrogen bonds have been characterized between water and starch, and the prevalence of water very weakly bound to starch has also been detected. The relative crystallinity (RC) was increased by thermal treatment, whereby microwaving recorded the highest value. A comparison of the FTIR and XRD results indicated that freeze-drying treatment overcomes heat effects to generate an integral starch molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.