In this study, MXene (Ti3C2Tx)/WO3 nanocomposite was directly deposited on the surface of non-thermal plasma treated cotton fabrics. Initially, argon was used as a plasma forming gas to treat the surface of cotton fabrics. Subsequently, the MXene (Ti3C2Tx)/WO3 nanocomposite was deposited on the surface of non-thermal plasma treated cotton fabrics by co-precipitation method. As prepared cotton fabrics were characterized by various characterization techniques that includes, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray (EDX) analysis, and Contact Angle (CA) measurement. SEM and FTIR analysis confirmed the presence of MXene (Ti3C2Tx)/WO3 nanocomposite on the surface of cotton fabrics. In addition, contact angle analysis unveiled the super hydrophilic nature of cotton fabrics after surface modification. The antibacterial activity and the wound healing assay of the untreated and surface modified cotton fabrics were examined by in vitro analysis. Results unveiled that the surface modified cotton fabrics showed excellent antibacterial activity against gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) and substantial wound healing activity. From this investigation it is inferred that plasma treated and nanocomposite functionalised cotton fabrics have the potential to be employed as wound dressing material.
Read full abstract