Abstract

This work reported the lanthanide ion (Gd3+) doped tungsten trioxide (Gd-WO3) nanocrystal for remarkable promoted photocatalytic degradation of organic pollutants and simultaneous in-situ H2O2 production. With doped lanthanide ion (Gd3+), Gd-WO3 showed a much broad and enhanced solar light absorption, which not only promoted the photocatalytic degradation efficiency of organic compounds, but also provided a suitable bandgap for direct reduction of oxygen to H2O2. Additionally, the isolated Gd3+ on WO3 surface can efficiently weaken the *OOH binding energy, increasing the activity and selectivity of direct reduction of oxygen to H2O2, with a rate of 0.58 mmol L−1 g−1 h−1. The in-situ generated H2O2 can be subsequently converted to •OH based on Fenton reaction, further contributed to the overall removal of organic pollutants. Our results demonstrate a cascade photocatalytic oxidation-Fenton reaction which can efficiently utilize photo-generated electrons and holes for organic pollutants treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.