In the commercialization process of wireless electric vehicle charging (WEVC), it is essential to ensure the interoperability between diverse WEVC systems due to the wide application of various coil configurations and compensation topologies. This paper proposes a novel electrical interoperability evaluation method based on impedance indices and corresponding feasible space in the complex plane. Firstly, the electromagnetic description of the coil system is introduced to reveal the energy flow process of WEVC system. Further, two key impedance indices and their feasible space are derived and verified. Interoperability evaluation results show that the reference devices in Chinese WEVC standard GB/T 38775.6 and GB/T 38775.7 are able to achieve the requirements of power capability. Moreover, it is necessary to reduce the duty cycle of rectifier when the battery voltage rises so as to narrow down the variation of load resistance and avoid dangerous working conditions. The proposed method can effectively evaluate the electrical interoperability of WEVC systems from different manufacturers under different power or distance levels before conducting experiments.
Read full abstract