In this article, rotor designs utilizing assisted-poles are investigated for a high-torque density spoke-type permanent magnet synchronous machine (PMSM) with fractional slot concentrated winding (FSCW) to explore the rich air-gap magnetic field harmonics and torque generation mechanism. Due to their higher average torque output, spoke-type PMSMs with FSCW are increasingly used in high-torque density applications. However, slot harmonics generate torque ripples that are difficult to eliminate in FSCW spoke-type PMSMs. Removing slot harmonics from the stator or winding results in a large drop in torque since their winding factors are identical to those of the main harmonic. Therefore, rotor designs having assisted-poles (symmetrical and asymmetrical) are investigated in this work to mitigate slot harmonics and minimize torque ripples. Firstly, the air-gap flux density is analyzed for the machines having assisted-poles, and a model of interaction between the stator and rotor-MMF harmonics is created and validated through Finite element analysis (FEA) to analyze the torque production mechanism. In addition, an analytical relationship between the assisted-poles’ dimensions and the generated torque harmonics is proposed. Furthermore, a generalized torque ripple reduction concept for the FSCW spoke-type PMSM having asymmetrically designed assisted-poles is presented. The proposed design and optimization method are validated through analytical calculations and FEA simulations, and a brief comparative analysis is presented for the analyzed machine prototypes. It has been established that the machine designed by applying the proposed asymmetrical assisted-poles can achieve a reduction in torque ripples while also significantly lowering cogging torque in comparison to the conventional spoke-type PMSMs and other spoke-type PMSMs with rotor having symmetrical assisted-poles.
Read full abstract