In European cities, groundwater remains an issue of significant concern, largely because it is “out of sight and out of mind.” The general public, and even decision-makers, possess only a limited understanding of the state and characteristics of this vital resource. As a consequence, problems related to groundwater quality or changing water tables/piezometric surfaces may persist for years, or even decades, without being adequately addressed-or worse, without being noticed at all before resulting in land subsidence,saltwater intrusion, deep migration of persistent organic contaminants like PFAS (Le monde, 2023) or other irreversible consequences. The urban water cycle is central to ensuring the supply of clean, safe drinking water, effective sanitation, and wellfunctioning drainage systems for millions of residents. The impacts of human activities, such as land use change, excessive water abstraction and mismanagement, and the discharge of wastewater can exert a far greater influence on groundwater systems and hydrogeology than climate change. These activities alter the quantity and quality of both surface and groundwater, raising complex scientific, technical, socio-economic, cultural, and ethical challenges in urban water management. It is important to address the many challenges associated with ensuring water security and safety in cities (Quevauviller et al., 2024), as well as for development of effective climate change mitigation and adaptation strategies for urban areas (IPCC, 2024). Groundwater plays a critical role in the green transition and is an integral component of most climate change mitigation and adaptation strategies (Ingemarsson et al., 2022), and for meeting the increasing demand for freshwater in cities due to accelerating urbanization (United Nations, 2022). Many urbanized areas in Europe already face poor chemical and quantitative status (EEA, 2024; Sentek et al., 2024), and global change including increasing populations and sea level rise pose a tremendous challenge for safe and secure water supply especially in coastal European cities. Open access to digital subsurface data e.g. through the European Geological Data Infrastructure supports societal needs and UN sustainable development goals (Hinsby et al., 2024). This special issue demonstrates some of the important issues that the water supply of European cities are facing in times of increasing competing use of the subsurface (Volckko et al., 2020), projected climate change impacts on the hydrological cycle (Henriksen et al., 2023) and with freshwater now being among the transgressed planetary boundaries (Richardsson et al., 2023). [...]