In this study, different concentrations of aqueous ammonia and pure water were fumigated and aspirated into the cylinder from the engine intake manifold. Aqueous ammonia (NH4OH) with 5 %, 10 % and 15 % ammonia (NH3) concentration was used in the experiments. Both aqueous ammonia and pure water were converted into cold vapor using an ultrasonic evaporator and conveyed to the combustion chamber as fume. Experiments were carried out at a constant engine speed of 660 rpm. Torque values of 25 %, 50 %, and 100 % (386 Nm) were used in the experiments, respectively. As a result of the experiments, it was seen that as the ammonia percentage increased, the engine efficiency was negatively affected. At 100 % torque, when comparing the BTE value of pure diesel fuel with the BTE values of experiments with 5 %, 10 %, and 15 % ammonia addition, decreases of 0.09 %, 2.27 %, and 3.57 % were observed, respectively. In experiments conducted with pure water, although the thermal efficiency increased significantly as the torque ratio increased, it still could not reach the thermal efficiency of pure diesel fuel. On the other hand, it has been observed that water vapor improves NO and HC emissions. While the NOx value tends to increase with the increase in ammonia concentration at low and medium load values, the NOx value tends to decrease relatively as the ammonia concentration increases at 100 % torque value. The highest NOx emission value, 534 ppmvol, occurred in the experiments with 15 % NH4OH addition. It was observed that the NOx emission value of all experiments conducted with aqueous ammonia additive at 100 % torque was lower than pure diesel. In this study, the effects of NH4OH and H2O on engine performance and emissions were investigated.
Read full abstract