Abstract
Optimizing electrosynthetic reactions requires fine tuning of a vast chemical space, including charge transfer at electrocatalyst/electrode surfaces, engineering of mass transport limitations, and complex interactions of reactants and products with their environment. Hybrid electrolytes, in which supporting salt ions and substrates are dissolved in a binary mixture of organic solvent and water, represent a new piece of this complex puzzle as they offer a unique opportunity to harness water as the oxygen or proton source in electrosynthesis. In this work, we demonstrate that modulating water-organic solvent interactions drastically impacts the solvation properties of hybrid electrolytes. Combining various spectroscopies with synchrotron small-angle X-ray scattering (SAXS) and force field-based molecular dynamics (MD) simulations, we show that the size and composition of aqueous domains forming in hybrid electrolytes can be controlled. We demonstrate that water is more reactive for the hydrogen evolution reaction (HER) in aqueous domains than when strongly interacting with solvent molecules, which originates from a change in reaction kinetics rather than a thermodynamic effect. We exemplify novel opportunities arising from this new knowledge for optimizing electrosynthetic reactions in hybrid electrolytes. For reactions proceeding first via the activation of water, fine tuning of aqueous domains impacts the kinetics and potentially the selectivity of the reaction. Instead, for organic substrates reacting prior to water, aqueous domains have no impact on the reaction kinetics, while selectivity may be affected. We believe that such a fine comprehension of solvation properties of hybrid electrolytes can be transposed to numerous electrosynthetic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.