Improving the anaerobic digestion (AD) performance in low-temperature environments has become a key factor in the development of waste treatment and resource recovery in cold regions. The utilization of external carriers to form a biofilm is the simplest and most practical way to enhance the psychrophilic AD performance in cold regions. In this study, the effect of carrier addition on the fermentation performance of low-temperature (15 ± 2 °C) food wastewater was investigated by forming biofilms with carbon brushes. The results showed that although the biofilm formation enhanced methane yields (15.24%), it also caused more accumulation of propionic acid (306.99–626.89 mg/L), and the concentration of acetic acid (86.78–254.71 mg/L) was relatively low. The microbial community revealed the highest abundance of the fermentative bacterium Firmicutes and the carbon brush carrier significantly increased its relative abundance (23.74%). Metatranscriptomic sequencing revealed that the abundance level of Clostridium, Bacteroides, Sedimentibacter and Pelotomaculum was the highest, reaching 80% in all groups. In addition, the abundance level of electroactive microorganisms in biofilms was higher, while the fermentation bacteria and methanogens were lower. This showed that biofilm can enrich more electroactive microorganisms, and granular sludge needs to enrich more fermentation bacteria and methanogens to ensure metabolic activity. Further studies have found that carbon metabolism had the highest activity (27.86%–30.39%) and H+-transporting ATPase (atp) was the most dominant functional enzyme (85.50%–86.65%) involved in electron transport in low-temperature fermentation of food wastewater. Interestingly, these expression levels of active granular sludge were higher than the biofilm formed by carbon brushes. Meanwhile, analysis of the methanogenic pathway found that active granular sludge tends to be directly metabolized to realize acetate to acetyl-CoA by acetyl-CoA synthetase (ACSS), while biofilms were not significantly different in the two metabolic pathways of acetate. These results deepen the understanding of treating low-temperature food wastewater.
Read full abstract