This paper conducted the slicing experiments of single-crystal silicon using a reciprocating electroplated diamond wire saw. The machined wafer topography and wire wear were observed by using scanning electron microscope (SEM). The influences of process parameters and cutting fluids on single-crystal silicon wafer surface roughness (SR), subsurface micro-crack damage (SSD) depth, total thickness variation (TTV) and warp were investigated. The bonded interface sectioning technique was used to examine the cut wafers SSD depth. Study results show that a higher wire speed and lower ingot feed speed can produce lower wafer SR and SSD; the lower warp of wafer needs lower wire speed and ingot feed speed; and low wafer TTV can be obtained by an appropriate matching relationship between wire speed and ingot feed speed. The synthetic cutting fluid has a better total effect to improve the wafer quality. The pulled-out of diamond abrasives is the main wear form of wire, which indicates that more research on improving the abrasives retaining strength on wire surface should be investigated in fixed-abrasive wire manufacturing process, in order to improve the wire life and wire saw machining process.
Read full abstract