In the present study, an artificial neural network model and multiple linear regression method were constructed to establish a relationship between the parameters of the thermal modification process and the mechanical properties of Eucalyptus camaldulensis wood samples. Three influencing parameters on the mechanical properties during heat treatment were considered input variables, namely water absorption, volumetric mass, and mass loss; the other parameters were kept constant (treatment temperature: 200, 220, 240, and 260 °C, and the duration: 5, 60, and 90 minutes). There were five neurons in the hidden layer that were used, as well as an output layer for the mechanical property. According to the results obtained, the mean square error (MSE) for the training, validation, and testing datasets were determined to be 0.21, 0.25, and 0.22 in the prediction modulus of rupture (MOR) and 0.019, 0.017, and 0.023 in the prediction modulus of elasticity (MOE). Higher coefficients of determination (R2) ranging from 0.93 to 0.98 were obtained for all datasets with the proposed ANN models, while the multiple linear regression models found the MSE to be 1.03 and 1.40 for MOR and MOE, respectively, as well as R2 to be 0.97 and 0.80, respectively. These results show that ANN models can be successfully used to predict the change in mechanical properties of wood during heat treatment.