The primary challenge in integrating renewable resources into grids using multilevel inverters (MLI) is the need for many separate DC sources and switching device counts. Transformer-based multilevel inverters (TMIs) have emerged to address this issue, aiming to minimize system components and boost source voltage with a single DC source. This research article introduces a novel TMI topology that utilizes only a single DC source and incorporates ten switches to produce good-quality load voltage with high magnitude. The proposed TMI offers several structural advantages, including self-galvanic isolation, reduced switching devices and uniform voltage levels across all turn ratios. Additionally, the TMI operates a switching method called pulse width modulation, which provides the gating pulses to all the power semiconductor devices in the proposed TMI. An experimental model has been created in a laboratory environment, and simulations are performed using the MATLAB/Simulink platform to assess the effectiveness of the suggested TMI. Furthermore, a comparison between the suggested TMI circuit and other recent TMI designs with similar characteristics is performed. This comparison is carried out to assess and validate the superior features of the proposed TMI over the alternative designs.