Since a urinary tract infection (UTI) is easy to relapse and difficult to treat, the antibiotic resistance rate has increased year by year in recent years. This study was to analyze the characteristics of the common pathogenic bacteria and the changes of antibiotic resistance in urinary system infection, so as to guide the standard use of antibiotics in a clinical urinary tract infection and control nosocomial infection effectively. A total of 5,669 strains of a urinary tract infection in the hospital from January 2009 to December 2017 were retrospectively analyzed. Bacterial identification and the antibiotic sensitivity test (AST) were analyzed by using a VITEK-2 Compact system. Of the 5669 pathogens, 3,256 (57.44%) of the strains were Gram-negative bacteria (GNB), 1,474 (26%) were Gram-positive bacteria (GPB), and 939 (16.56%) were fungi. Resistant rates of ESBL-producing strains were all significantly different from non-ESBL-producing strains in Escherichia coli (p < 0.05). The resistance rate of ESBL-producing strains to β-lactam antibiotics was all higher than that of non-ESBL-producing strains in Klebsiella pneumoniae (p < 0.05). The detection rate of vancomycin-resistantEnterococcus faecium and Enterococcus faecalis was 37.3% and 3.1%, respectively, and the detection rate of linezolid-resistantEnterococcus faecium and Enterococcus faecalis was 0.68% and 0%, respectively. The drug resistance rate of candida sp. to fluconazole, itraconazole, and voriconazole was 1.7%, 8.5%, and 3.4%, respectively. No amphotericin B-resistant strains were detected in the research. Among the 5669 strains isolated from urinary tract infection patients, GNB were the main pathogens. Escherichia coli was the major pathogen. The resistance rate of ESBLs-producingEscherichia coli was higher than that of non-ESBLs-producingEscherichia coli in general; meanwhile, β-lactam/β-lactamase inhibitors and carbapenems maintained good antimicrobial activity against Escherichia coli. The resistance rate of non-ESBLs-producingKlebsiella pneumoniae strains was significantly higher than that of ESBLs-producingKlebsiella pneumoniae strains, and drug resistance was more prominent; most of the antibiotic resistance rates were over 50%. The antimicrobial resistance rate of Enterococcus faecium was significantly higher than that of Enterococcus faecalis. There were rare linezolid-resistant strains. The antimicrobial resistance rate of imidazole to fungi was controlled less than 10%.
Read full abstract