Rotational structures of A–X and B–X vibronic transitions of HgHe, HgNe, and HgAr van der Waals (vdW) complexes formed in supersonic free jets have been investigated. An analysis of the rotational contours shows that rotational structures for the six isotopic species, mHgHe, mHgNe, or mHgAr (m=204,202,201,200,199, and 198), are overlapped, and the observed isotopic splittings are utilized for the definite assignment of the vibrational quantum numbers in the A and B states. Based on the vibrational level spacings and the rotational constants, interatomic potentials for the A and B states of HgNe and HgAr are determined with good accuracy. In the case of the B state of the 199HgRg and 201HgRg (Rg=Ne or Ar), magnetic dipole hyperfine splittings are observed and analyzed.