Abstract

The effect of vibrational excitation on the photodissociation cross section of ozone in the Hartley continuum is examined. The calculations make use of newly computed potential energy and transition dipole moment surfaces. The initial vibrational states of the ozone are computed using grid based techniques and the first few ab initio computed vibrational energy level spacings agree to within 10 cm(-1) with experimental values. The computed total absorption cross sections arising from different initial vibrational states of ozone are discussed in the light of the nature of the transition dipole moment surface. The computed cross section for excitation from the ground vibrational-rotational state is in good agreement with the experimentally measured cross section. Excitation of the asymmetric stretching vibration of ozone has a marked effect on both the form and magnitude of the photodissociation cross section. The velocity distributions of highly reactive O(1D) atoms arising from the photodissociation process in different wavelength ranges is also presented. The results show that the O(1D) atoms travel with a most probable translational velocity of 2.030 km s(-1) corresponding to a translational energy of 0.342 eV or 33.0 kJ mol(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.