Abstract

For nearly all states dissociating below the ionic limit, we perform an adiabatic and diabatic study for 1Σ+ and 3Σ+ electronic states dissociating into Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s and 4f) + H (1s). Furthermore, we present the adiabatic results for the 1–5 1,3Π and 1–3 1,3Δ states. The calculations rely on an ab initio pseudopotential, semi-empirical operator core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in very good agreement with the available experimental data. Diabatic potentials and dipole moments are analysed, revealing the strong imprint of the ionic state in the 1Σ+ adiabatic states. The H electron affinity correction was accounted for by the use of the efficient diabatization method. This leads to a better agreement with the available experimental data. Experimental suggestions are also given for the higher excited states based on their unusual behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.