Insufficient short-circuit (SC) robustness of currently commercial GaN power devices, i.e., the high electron mobility transistors (HEMTs), is a key roadblock for their applications in automotive powertrains. At a 400 V bus voltage ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BUS</sub> ), the SC withstanding time ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SC</sub> ) of commercial GaN HEMTs is typically below 1 μs, far below the usual system requirement (>10 μs). This letter presents breakthrough short-circuit capability in a vertical GaN fin-channel junction-gate field-effect transistor (Fin-JFET). The Fin-JFET is normally <sc xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</small> with a 0.7 mΩ·cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> specific <sc xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</small> -resistance and 800 V avalanche breakdown voltage (BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">AVA</sub> ) at the room temperature. The gate driver in the short-circuit test was designed to be identical to that in device switching applications. The <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SC</sub> of GaN Fin-JFETs was measured to be 30.5 μs at a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BUS</sub> of 400 V, 17.0 μs at 600 V, and 11.6 μs at 800 V, all among the longest reported for 600–700 V normally <sc xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</small> transistors. In addition, GaN Fin-JFETs failed open in these tests and retained BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">AVA</sub> after failure, which is highly desirable for system applications. In the repetitive 10 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">μ</i> s, 400 V short-circuit tests, GaN Fin-JFETs showed no degradation after 30 000 cycles. Furthermore, to the best of our knowledge, this is the first report of a power transistor with good short-circuit ruggedness at a bus voltage close to its BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">AVA</sub> . The underlying mechanism is the unique avalanche-through-fin in the Fin-JFET, which is validated by mixed-mode TCAD simulations and unclamped inductive switching tests. These results reveal the inherent ruggedness of GaN Fin-JFETs in the concurrent presence of short-circuit and overvoltage in power electronics systems.
Read full abstract