The issue of power supply to electric rail vehicles leads to a separation of the rail network into electrified and unelectrified portions, where the sections lacking electrification exclude the operation of electric rail vehicles powered from the overhead lines. The potential solution to this problem was found in adding energy storage systems to electric rail vehicles, to allow them some range of travel beyond the electrified lines. A simulation analysis of a special purpose rail vehicle travelling across a non-electrified section of railway line was conducted to assess the energy consumption rate and the necessary energy storage capacity. Three energy storage solutions were simulated, showing the travel range they can provide, with the aim of finding the lowest battery capacity solution that would still allow the vehicle to safely complete the simulated drive. The final selection of energy storage system capacity was done based on the assumed expected range outside electrified railway weighed against the mass and cost of the extra energy storage system added to the vehicle. For a vehicle with a mass of 65 tons a battery system with a capacity of 600 Ah was found to be sufficient.