Abstract

AbstractBattery electric vehicles (BEVs) are widely considered a pathway to achieve low carbon mobility. BEVs emit zero emissions from the tailpipe, but their life cycle carbon reduction compared to gasoline vehicles varies based on primary energy sources, electricity generation, and use efficiency. The Middle East and North Africa (MENA) region is an area rich in fossil fuels, meriting a detailed comparison between the emissions from BEV and other powertrains. We developed a MENA‐specific life cycle model that estimates well‐to‐wheel (WTW) greenhouse gas (GHG) emissions from passenger transport with internal combustion engine vehicles (ICEVs), hybrid electric vehicles (HEVs), plug‐in hybrid electric vehicles, and BEVs. MENA's average WTW GHG emissions for all supply chain steps including combustion emissions from vehicle operation are 767 g/kWh and 84 g CO2eq/MJ for electricity and gasoline, respectively, but are highly variable due to heterogeneity in upstream supply chains. The use of hybrid gasoline ICEVs provides the largest emission reduction opportunity for existing vehicle fleets in 9 of the 16 MENA countries. For these nine countries, replacing gasoline ICEVs with HEVs could, on average, reduce country‐level life cycle GHG emissions by 47%. There is a similar emission reduction opportunity for 14 of the 16 MENA countries when normalizing vehicle efficiencies irrespective of the powertrain shares and other trends in existing vehicle fleets. Future scenario analysis shows that BEVs would have the lowest WTW GHG emissions among all powertrains in most MENA countries only if significantly reduced electricity transmission losses and cleaner grid mix are realized, although a high cost of infrastructure developments is expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.