Abstract

The purpose of this study is to design a Swarm Control algorithm for the effective mission performance of multiple unmanned surface vehicles (USVs) used for marine research purposes at sea. For this purpose, external force information was utilized for the control of multiple USV swarms using a lead–follow-formation technique. At this time, to efficiently control multiple USVs, the LSTM algorithm was used to learn ocean currents. Then, the predicted ocean currents were used to control USVs, and a study was conducted on behavioral-based control to manage USV formation. In this study, a control system model for several USVs, each equipped with two rear thrusters and a front lateral thruster, was designed. The LSTM algorithm was trained using historical ocean current data to predict the velocity of subsequent ocean currents. These predictions were subsequently utilized as system disturbances to adjust the controller’s thrust. To measure ocean currents at sea as each USV moves, velocity, azimuth, and position data (latitude, longitude) from the GPS units mounted on the USVs were utilized to determine the speed and direction of the hull’s movement. Furthermore, the flow rate was measured using a flow rate sensor on a small USV. The movement and position of the USV were regulated using an Artificial Neural Network-PID (ANN-PID) controller. Subsequently, this study involved a comparative analysis between the results obtained from the designed USV model and those simulated, encompassing the behavioral control rules of the USV swarm and the path traced by the actual USV swarm at sea. The effectiveness of the USV mathematical model and behavior control rules were verified. Through a comparison of the movement paths of the swarm USV with and without the disturbance learning algorithm and the ANN-PID control algorithm applied to the designed simulator, we analyzed the position error and maintenance performance of the swarm formation. Subsequently, we compared the application results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.