We report a systematic investigation of anisotropic magnetocaloric effects in a crystalline, monoclinic Cr3Te4 sample grown by the chemical vapor transport (CVT) method. The maximum magnetic entropy change −ΔSmaxM is 3.31 J kg−1 K−1 for the c axis (3.16 J kg−1 K−1 for the ab-plane) and the relative cooling power (RCP) is 340 J kg−1 for the c axis (350 J kg−1 for the ab-plane) near the Curie temperature with a magnetic field (μ0H) change of 9 T. With the scaling analysis of ΔSM, all rescaled ΔSM(T, H) curves collapse onto a single universal curve, indicating a second-order magnetic phase transition in Cr3Te4. Furthermore, −ΔSmaxM follows the power law of Hn with n = 0.656 ± 0.005. The RCP and δTFWHM have Hc and Hb dependence on field, with c = 1.179 ± 0.011 and b = 0.498 ± 0.005, respectively, which led us to estimate the critical exponents of β = 0.359 ± 0.013, γ = 1.646 ± 0.057, and δ = 5.578 ± 0.190.
Read full abstract