Abstract
The heavy metal selenophosphate Pb2P2Se6 emerges as a promising room-temperature X-ray/γ-ray detectors due to its high resistivity, robust radiation-blocking capability, and outstanding carrier mobility-lifetime product, etc. However, the high activity of phosphides poses significant impediment to the synthesis and single crystal growth. In this work, we have prepared high-quality Pb2P2Se6 single crystals with using the chemical vapor transport (CVT) method. The XRD analysis combined with EDS result confirmed the uniform composition of the resulting as-grown single crystals, while UV-Vis-NIR transmittance spectra revealed the bandgap of 1.89 eV. Selected area electron diffraction patterns indicated the crystal belonged to the P21/c(14) space group. Additionally, the Au/Pb2P2Se6/Au device is fabricated, which exhibits a robust X-ray response with a sensitivity of 648.61 μC Gy-1 cm-2 at 400 V mm-1 under 50 kVp. Notably, the device also excels in alpha particle detection, boasting a resolution of ~14.48 % under a bias of 400 V bias. The hole mobility-lifetime product (μτ)h of Pb2P2Se6 is estimated to be ~2.58×10-5 cm2 V-1. The results underscore potential applications of Pb2P2Se6 crystal is in the field of the semiconductor radiation detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.