Abstract

The heavy metal selenophosphate Pb2P2Se6emerges as a promising room-temperature X-ray/γ-ray detectors due to its high resistivity, robust radiation-blocking capability, and outstanding carrier mobility-lifetime product, etc. However, the high activity of phosphides poses significant impediment to the synthesis and single crystal growth. In this work, we have prepared high-quality Pb2P2Se6 single crystals with using the chemical vapor transport (CVT) method. The XRD analysis combined with EDS result confirmed the uniform composition of the resulting as-grown single crystals, while UV-Vis-NIR transmittance spectra revealed the bandgap of 1.89 eV. Selected area electron diffraction patterns indicated the crystal belonged to the P21/c(14) space group. Additionally, the Au/Pb2P2Se6/Au device is fabricated, which exhibits a robust X-ray response with a sensitivity of 648.61 μC·Gy-1·cm-2 at 400 V·mm-1 under 50 kVp. Notably, the device also excels in alpha particle detection, boasting a resolution of ~14.48% under a bias of 400 V bias. The hole mobility-lifetime product (µτ)h of Pb2P2Se6 is estimated to be ~2.58×10-5 cm2·V-1. The results underscore potential applications of Pb2P2Se6 crystal is in the field of the semiconductor radiation detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call