A uniform unidirectional nanostructure composed of aluminum tin oxide and ultraviolet (UV)-curable polymer is introduced herein. The nanostructure was produced by UV-nanoimprint lithography (UV-NIL), and the fabricated hybrid film was used as a uniform liquid crystal (LC) alignment layer. Atomic force microscopy and line profile analysis were performed to confirm a well-ordered nanostructure with 760 nm periodicity and 30 nm height. X-ray photoelectron spectroscopy analysis was also conducted to examine the chemical modifications to the hybrid film surface during UV exposure. Optical transmittance investigation of the nanopatterned hybrid film revealed its compatibility for LC device application. Stable, uniform, and homogeneous LC alignment on the hybrid film was confirmed by polarized optical microscopy observance and analysis of LC pretilt angle. The unidirectional structure on the film surface enabled uniform LC orientation along with surface anisotropy property. Hence, we expect that the proposed UV-NIL process can be applied to fabricate high-resolution unidirectional nanostructures with various inorganic/organic hybrid materials and that these nanostructures have high potential for next-generation LC systems.
Read full abstract