The application of passive design strategies in ships, such as the use of superstructures with high thermal insulation, allows the energy demand of heating, ventilation, and air conditioning systems to be reduced. There is a knowledge gap in the scientific literature on the possibilities to thermally characterize superstructures. Knowing such possibilities would make a methodology available for the quality control of naval constructions and for the inspection of the appropriate state of insulations in existing ships. For this purpose, a total of three different typologies of ship superstructures were monitored, and the data obtained were analyzed by using various existing approaches for the thermal characterization of façades: the heat flow meter method and temperature measurement methods. The results showed that the heat flow meter method constitutes a valid methodology to obtain representative results. In addition, guaranteeing a thermal gradient dependent of the wall typology and placing probes in zones not influenced by thermal bridges ensure that representative results are achieved.