In the barn owl (Tyto alba), the external nucleus of the inferior colliculus (ICX) contains a map of auditory space that is calibrated by visual experience. The source of the visually based instructive signal to the ICX is unknown. Injections of biotinylated dextran amine and Fluoro-Gold in the ICX retrogradely labelled neurons in layers 8-15 of the ipsilateral optic tectum (OT) that could carry this instructive signal. This projection was point-to-point and in register with the feed-forward, auditory projection from the ICX to the OT. Most labelled neurons were in layers 10-11, and most were bipolar. Tripolar, multipolar, and unipolar neurons were also observed. Multipolar neurons had dendrites that were oriented parallel to the tectal laminae. In contrast, most labelled bipolar and tripolar neurons had dendrites oriented perpendicular to the tectal laminae, extending superficially into the retino-recipient laminae and deep into the auditory recipient laminae. Therefore, these neurons were positioned to receive both visual and auditory information from particular locations in space. Biocytin injected into the superficial layers of the OT labelled bouton-laden axons in the ICX. These axons were generally finer than, but had similar bouton densities as, feed-forward auditory fibers in the ICX, labelled by injections of biocytin into the central nucleus of the inferior colliculus (ICC). These data demonstrate a point-to-point projection from the OT to the ICX that could provide a spatial template for calibrating the auditory space map in the ICX.
Read full abstract