Abstract

Three-dimensional (3-D) morphology of neurons of the terminal nerve plexus of the atrioventricular junction was examined in a scanning electron microscope. Distributions of different cell types encountered as well as their relations to different structures of the atrioventricular specialized tissue were also studied. Most neurons were found disseminated in a thin connective tissue layer separating different segments of the atrioventricular conductive tissue from the interventricular septum. Sometimes, they formed small pluricellular ganglia (up to 5 neurons) but, frequently, they occurred isolated in the terminal ramifications of the intramural nerve plexus of specialized tissue. Some intranodal neurons could also be identified. According to their 3-D morphology, nerve cells of the perinodal ganglionated plexus could be divided into three categories: (1) Large unipolar neurons were scattered throughout the atrioventricular junction. Their long and thin axonal projections were often directed towards the interventricular septum. (2) Large pseudounipolar or bipolar neurons were located at a few specific loci, namely all along the bundle of His and its bifurcation into the right and left bundle branches. Frequently, they occurred solitary and immersed amongst strands of surrounding muscle cells. Only occasional synaptic impacts could be identified on the surface of neuronal bodies of these bipolar neurons. On the other hand, their dendritic varicosities were richly innervated. Due to their irregular shape, intimate association with muscular elements and their topographical superposition with occasional spindle-like structures, these nerve cells recall prospective sensory neurons involved in integration of mechanical and neural stimuli to the heart. (3) Small multipolar interneurons could be identified in the retronodal ganglion and within right and left bundle branches. The present description of morphological heterogeneity of intramural nerve cells agrees with recent morphological and functional classifications of autonomic neurons and supports the idea that, at the level of the atrioventricular junction, a self-governed neuronal network may be operating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.