The effects of heat-treatment, matrix microstructure, and reinforcement size on the evolution of damage, in the form of SiCp cracking, during uniaxial tension testing of an aluminum-alloy based composite have been determined. A powder metallurgy Al-Zn-Mg-Cu alloy reinforced with 15 vol pct of either 5 or 13 μm average size SiCp was heat treated to solution annealed (SA), underaged (UA), and overaged (OA) conditions. The SA treatment exhibited lower yield strength and higher ductility for both particulate sizes compared to the UA and OA conditions. The evolution of damage, in the form of SiCp fracture, was monitored quantitatively using metallography and changes in modulus on sequentially strained specimens. It is shown that the evolution of SiCp fracture is very dependent on particulate size, matrix aging condition, and the details of the matrix-reinforcement interfacial regions. SiCp fracture was exhibited by the UA and OA treatment over a range of strains, while a preference for failure near the SiCp/matrix interfaces and in the matrix was exhibited in the OA material. While thepercentage of cracked SiCp at each global strain typically was equal or somewhat lower in the material reinforced with 5 μm average size SiCp, theabsolute number of cracked SiCp was always higher at each global stress and strain in the material containing 5 μm average size SiCp, for each heat treatment. Damage(e.g., voids) in the matrix and near the SiCp/matrix interfaces was additionally observed, although its extent was highly matrix and particle-size dependent. It was always observed that increases in stress (and strain) produced a larger amount of fractured SiCp. However, neither a global stress-based nor a global strain-based model was sufficient in converging the amount of SiCp fractured for all heat treatments and particle sizes tested.