Abstract
The influence of environment and microstructure on fatigue crack growth has been investigated on a high strength 7049 aluminium alloy. This aluminium alloy was artificially aged to underaged (UA) and overaged (OA) microstructures. The heat treatment procedure was performed in order to obtain an UA and OA microstructure having the same yield strength properties, but differing in the mode of slip deformation: the UA alloy deforms by planar slip and that of the OA alloy by wavy slip. The crack growth measurements were performed in MT specimens at constant load ratios for R=0, −1, −2, −3 near-threshold and Paris regime in ambient air and vacuum conditions. Crack closure loads were measured in order to determine the P open for each R ratio. Micromechanisms of near-threshold crack growth are briefly discussed for several concurrent processes involving environmentally assisted cracking with intrinsic microstructural effects. The results showed that the presence of humid air leads to a larger reduction in Δ K th for both the ageing conditions, but the UA specimens were superior probably because of crack branching. The role of environmental effect and microstructures near-threshold regime seems to be more significant than any mechanical contributions to the crack closure, such as plasticity, roughness, oxide, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.