AimDoped carbon dots (CDs) have attracted tremendous attention in cancer therapy. We aimed to synthesize copper, nitrogen-doped carbon dots (Cu, N-CDs) from saffron and investigated their effects on HCT-116 and HT-29 colorectal cancer (CRC) cells. Main methodsCDs were synthesized by hydrothermal method and characterized by transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV–Vis) absorption spectroscopy, and fluorescence spectroscopy. HCT-116 and HT-29 cells were incubated with saffron, N-CDs, and Cu, N-CDs for 24 and 48 h for cell viability. Cellular uptake and intracellular reactive oxygen species (ROS) were evaluated by immunofluorescence microscopy. Oil Red O staining was used to monitor lipid accumulation. Apoptosis was evaluated using acridine orange/propidium iodide (AO/PI) staining and quantitative real-time polymerase chain reaction (Q-PCR) assay. The expression of miRNA-182 and miRNA-21 was measured by Q-PCR, while the generation of nitric oxide (NO) and lysyl oxidase (LOX) activity was calculated by colorimetric methods. Key findingsCDs were successfully prepared and characterized. Cell viability decreased in the treated cells dose- and time-dependently. HCT-116 and HT-29 cells uptook Cu, N-CDs with a high level of ROS generation. The Oil Red O staining showed lipid accumulation. Concomitant with an up-regulation of apoptotic genes (p < 0.05), AO/PI staining showed increased apoptosis in the treated cells. In comparison to control cells, NO generation, and miRNA-182 and miRNA-21 expression significantly changed in the Cu, N-CDs treated cells (p < 0.05). SignificanceThe results indicated that Cu, N-CDs could inhibit CRC cells through the induction of ROS generation and apoptosis.
Read full abstract