Abstract

2,6-Dichloro-4-nitroaniline, alias dicloran (DCN), is a broad-spectrum pesticide that can cause irreversible damage to the human body. Therefore, it is of great significance to develop a technology for the rapid and convenient detection of DCN. Luminescent metal organic frameworks have attracted extensive attention in the field of sensing and detection due to their excellent optical properties. In this study, two kinds of 2D Cd-MOFs (CdMOF-1 and CdMOF-2) were developed for the detection of residual DCN in the environment. Both CdMOFs exhibit excellent solvent and acid-base stability and can respond to DCN quickly and sensitively in a short time (30 s). CdMOFs not only have good selectivity and anti-interference toward DCN but also have good reusability. Under the conditions of DCN concentrations of 1-15 and 0.3-30 μM, the change in fluorescence intensity of CdMOF-1 and CdMOF-2 showed a good linear relationship with DCN concentration (R2 = 0.999/0.991), and the detection limits were 0.36 and 0.12 μM, respectively. Through ultraviolet-visible absorption spectroscopy (UV-Vis), X-ray photoelectron spectroscopy, fluorescence lifetime, and density functional theory calculations, it is revealed that the fluorescence quenching mechanisms of DCN for two kinds of Cd-MOFs are competitive absorption and photoinduced electron transfer, and there may be a weak π-π interaction. Finally, it is demonstrated that by using two types of fluorescent CdMOFs to make the fluorescent test paper and detect actual soil, these can be applied to the actual scene and achieve onsite real-time detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.