AbstractIn this paper a new technique for the formation of high quality ultrathin gate dielectrics is proposed. Gate oxynitride was first grown in N2O and then annealed by in-situ rapid thermal NO-nitridation. This approach has the advantage of providing a tighter nitrogen distribution and a higher nitrogen accumulation at or near the Si-SiO2 interface than either N2O oxynitride or nitridation of SiO2 in the NO ambient. It is applicable to a wide range of oxide thickness because the initial rapid thermal N2O oxidation rate is slow but not as self-limited as NO oxidation. The resulting gate dielectrics have reduced charge trapping, lower stress-induced leakage current and significant resistance to interface state generation under electrical stress