Using laser cooling technology, we demonstrate an ultranarrow-bandwidth Faraday anomalous dispersion optical filter (FADOF) which operates on the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$5^{2}\text{S}_{1/2}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$F = 2$ </tex-math></inline-formula> ) to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$6^{2}\text{P}_{3/2}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$F' = 3$ </tex-math></inline-formula> ) transition at 420 nm based on cold 87Rb atoms. The filter achieves a single 2.7(2) MHz passband at a peak transmission of 3.2%. It is the narrowest bandwidth FADOF known at present, as the influence of Doppler broadening on the bandwidth narrowing of FADOF is effectively overcome by cold atoms. This ultranarrow-bandwidth FADOF has a figure of merit (FOM) value of 11.85 GHz−1, which is seven times larger than the largest FOM achieved by thermal vapor atomic optical filter published to date. Furthermore, the scheme can be extended to almost all kinds of atomic optical filters and may find applications in active Faraday optical frequency standard and self-stabilizing laser.
Read full abstract